
Calculating distance using GPS data
Using only elementary mathematics

Vamshi Jandhyala
February 6, 2023

Background
I recently started using the Strava app to keep track of my walking. A few "weird" Strava
activity maps and WhatsApp discussions piqued my curiosity. I wanted to understand how
Strava calculates the distance covered and if I could replicate the distance measurements
using elementary mathematics. Here are the details of my run from last night:

Activity Data
Strava uses GPS on the phone to generate a GPX file for the route/track and allows users
to download the data. You can find more details on the gpx format here. The activity data
in its simplest form is essentially an ordered list of (longitude, latitude) tuples. With the
activity data in hand, all I wanted was a simple, elegant yet accurate mathematical model

1

Vamshi Jandhyala (February 6, 2023) Calculating distance using GPS data

for calculating the distance between two (longitude, latitude) tuples that doesn’t require
anything beyond high school mathematics.Here are a few trackpoints from the GPX file:

time latitude longitude elevation
2023-02-02 20:28:18+00:00 51.191533 0.270437 28.4
2023-02-02 20:28:19+00:00 51.191454 0.270578 28.3
2023-02-02 20:28:20+00:00 51.191453 0.270605 28.3
2023-02-02 20:28:21+00:00 51.191451 0.270631 28.3
2023-02-02 20:28:22+00:00 51.191450 0.270658 28.3a

Mathematical Model

Assumptions
• Assume the Earth is flat between two consecutive trackpoints. This is a reasonable
assumption as the distance between two consecutive trackpoints(less than a couple of
meters) is much smaller compared to the radius of the Earth.

• Earth is a perfect sphere even though in reality it is an oblate spheroid.

• Elevation can be ignored as the route is on fairly flat ground.

If P(a1,b1) and Q(a2,b2) are two consecutive track points, the key idea is to project Q
onto the tangent plane at P, with axes parallel to the lines of latitude and longitude at P.
We first set up a coordinate system (x,y) that puts P at the origin.

Figure 1: Tangent plane at P

For the x coordinate ofQ, we can use the the distance along a line of latitude from one
line of longitude to the other:

x =
πR

180(a2 − a1)cos(b1)

Here we have an additional factor, the cosine of the latitude along which we are measuring.
The line of latitude is a circle with a smaller radius than that of the equator; it is reduced by
the factor cos(b1).

For the y coordinate, we can use the north-south distance between two lines of latitude:

y =
πR

180(b2 − b1)

2

Vamshi Jandhyala (February 6, 2023) Calculating distance using GPS data

The distance from the origin(P) to the other point Q(x,y) is then given by the square root of
(x2 + y2).

Figure 2: Coordinate system with origin at P

Python implemenation
Here is the code in Python which implements the above model.

def gpx_to_coords(gpx_path):
import gpxpy
with open(gpx_path) as f:

gpx = gpxpy.parse(f)

points = []
for segment in gpx.tracks[0].segments:

for p in segment.points:
points.append({

'time': p.time,
'latitude': p.latitude,
'longitude': p.longitude,
'elevation': p.elevation,

})
return [(p["longitude"], p["latitude"]) for p in points]

def planar_distance(start, end, R=6367):
from math import pi, cos, sqrt
lon1, lat1, lon2, lat2 = start[0], start[1], end[0], end[1]
x = pi*R*(lon2-lon1)*cos(lat1)/180
y = pi*R*(lat2-lat1)/180
return sqrt(x**2 + y**2)

def distance(coords, dist_fun):
return sum([dist_fun(start, end) for start, end in zip(coords[:-1], coords[1:])])

print(distance(gpx_to_coords('Night_Walk.gpx'), planar_distance))

Using the simple model above, we get a distance of 3.574km which is very close to the
distance calculated by Strava - 3.58km.

3

